III. HOMOGENEOUS DATA

- D. MIXED AND MISCELLANEOUS SYSTEMS
 - 1. Correlation Between Calculation and Experiment
 - 2. H/X versus Fissile* g/l Relationship
 - 3. Critical Sphere Dimensions

All graphs within this and following divisions have the percentage by weight of the major fissile-atom-containing component as the fourth identification number. For example, III.D.3(3)-1 might signify a graph showing data for a PuO₂-UO₂ mixture containing 3 weight percent PuO₂ with the uranium being either natural or depleted, while III.D.3(3)-2 might show data for material containing 3 weight percent U-233 in thorium.

- 4. Critical Cylinder Dimensions
- 5. Critical Slab Dimensions
- 6. Critical Mass Sphere
- 7. Critical Mass per Unit Height Cylinder
- 8. Critical Mass per Unit Area Slab
- 9. Critical Volume
- 10. Material Bucklings and Infinite Multiplication Factor

^{*}In this book fissile atoms are those which can sustain a chain reaction in at least one condition. Fissionable atoms are defined as those which can be made to fission but may or may not (e.g., 238U) be capable of forming a critical mass.